本文理論與實踐相結合,通過電預熱技術在燕郊開發區供熱工程中的應用,分析了電預熱技術的基本原理、電預熱技術及電預熱設備在直埋管道安裝過程中的應用情況以及注意事項。印證了電預熱無補償(或少補償)直埋技術對大管徑管道的可行性和適用性。 作者:北京冠亞偉業民用建筑設計有限公司 郭凱
一、前言
對于大管徑管道直埋敷設,通常采用兩種方式:有補償安裝和預應力安裝。根據現場條件的不同,預應力安裝方式又可分為敞槽預熱方式和覆土預熱方式。中國供熱信息網了解到由于敞槽預熱方式比覆土預熱方式能更快達到預應力效果,通常在現場條件允許的情況下,首選敞槽預熱方式。
采用敞槽預熱方式的前提是要具備穩定的臨時熱源,敞槽預熱的熱源主要為四種,分別為熱水、熱風、蒸汽及電預熱。電預熱與前三種預熱技術相比較對加熱設備的要求更小,更易實施,具有如下明顯的技術優勢:
1.要求簡單,不需要在管道中安裝閥門和固定支架;
2.熱消耗量小,預熱均勻;
3.電預熱設備體積小、易操作、無震動、無噪音,自動監控;
4.適用范圍廣,只要鋼管為介質輸送管,都可以實現;
5.低電壓可以保證施工安全。

二、電預熱技術在燕郊開發區供熱工程中的應用
燕郊開發區海油大街熱力管線管徑為DN800,供、回水溫度為140℃/90℃,設計壓力為1.6MPa。海油大街熱力管線于2008投入使用,根據現場實際情況及工程進度,并考慮到甲方的資金狀況,管線的敷設方式為預應力直埋敷設,工程采用了電預熱方式。通過電預熱技術在燕郊開發區供熱工程中的應用,積累了一些實踐經驗供大家參考。
1、預熱準備工作
a.管道預熱應在直埋管道安裝完畢后進行,若管道已作水壓試驗,應確保將管道中的水排放完,避免在預熱過程中出現危險;
b.預熱前先對溝槽進行回填,回填高度不高于管道外徑的3/4,這是為了保證管道在預熱過程中始終保持同心;
c.在預熱管段的兩側分別設標尺,并派專人記錄管道的伸長量,伸長量應等于兩側伸長量的總和;
d.將預熱管段兩端用端帽密封,防止氣體流通;
e.檢查預熱設備及電纜是否正確連接,管道上有無短路連接,如果存在短路連接點,應在預熱之前及時切斷或調整預熱管段,避開短路點。
2、預熱溫度
鑒于管道預熱前,已對溝槽進行了部分回填,管道須克服土壤的摩擦力,且高溫時管道的屈服應力下降,預熱溫度應該略高于循環中間溫度。附加溫度的推薦值為0~8℃,即 tdp=tm+(0~8)(公式1)
tm=0.5×(t1+t2)(公式2)
式中:tdp—計算預熱溫度(℃);
tm—循環中間溫度(℃);
t1—管道工作循環最高溫度(℃);
t2—管道工作循環最低溫度(℃)。
以燕郊開發區海油大街熱力管線為例,其最高循環溫度為140℃,管道僅在供暖季工作時最低循環溫度為10℃,計算預熱溫度為80℃最為合適。
3、預熱段的劃分
合理確定預熱段的長度。既能夠保證施工進度、降低施工難度,同時還節省了施工費用。以燕郊開發區海油大街熱力管線為例,該段管線總長度約為3.5km,全線共設3座檢查室,檢查室內設分支、固定支架及補償器(見圖1)。結合工程的施工難度及工程的總體時間安排,最后確定兩檢查室之間管線分為兩個預熱段,工程共設六個預熱段,預熱段長度在500~800米之間(預熱段編號見圖1)。
4、升溫速度及預熱時間
燕郊開發區海油大街熱力管線沿道路敷設,熱力管線在遇到障礙時采用了連續小折角處理方式避開障礙,折角不大于2度。這種情況預熱時往往因為管道膨脹不均勻,造成夾角處局部應力過大。為使管道得到充分膨脹,應嚴格控制升溫速度。升溫速度為4℃/小時,并在溫度升至計算預熱溫度時恒溫6小時。縱觀整個預熱過程,管道的溫度基本按照設定的溫升速度直線均勻上升,管道的加熱速度均勻平穩,沒有大的起伏。預熱時間需要20至30小時。
5、預熱伸長量
ΔL=α(tm-t0)L(公式3)
式中:ΔL——預熱段管道伸長量(m);
t0——預熱段管道初始位移為零時管道溫度(℃),一般可取預熱前環境溫度;
L——預熱段管道長度。
上式為預熱段管道理論伸長量計算公式,在管道預熱過程中,管道中間沒有固定點,管道向兩側伸長。經觀察發現管道的膨脹并不是連續穩定的。中國供熱信息網了解到在預熱開始階段,管道的熱伸長速度很慢,伸長量并沒有太大變化(見表1)。但當溫度繼續升高后,管道的膨脹量基本按照直線勻速上升(見圖2)。這說明管道的預熱是基本均勻的,不存在沒有預熱的管段。同時也印證了保持合理的升溫速度是非常有必要的。
預熱時確定管道預熱處理的標準應為預熱伸長量,當管段的伸長量達到計算預熱伸長量時,應立即回填。預熱溫度可以作為預熱升溫時的一個參考值。若附加溫度已達到推薦的最大值,而伸長量尚未達到計算值,則須認真分析原因,不要盲目升溫,最好采取恒溫讓管道充分膨脹或外力拉伸等辦法,以達到計算伸長量。
6、預熱段之間的處理方法
如何處理好預熱段之間的銜接是影響管道預熱效果的重要因素,兩個預熱段之間的管端因降溫會引起管端回縮。遂采用設置一次性補償器的方式來補償回縮量。具體步驟如圖3所示。
一次性補償器焊死后將成為管道系統的一部分,整個預熱管道系統最后將形成一個完全與土壤隔絕的封閉系統。但這樣做勢必增加了工程費用,且一次性補償器需長時間敞槽,會對交通造成一定的影響,故還須合理劃分預熱段,盡量減小管端收縮量和一次性補償器的數量。以海油大街熱力管線工程為例,兩檢查室之間分為兩個預熱段,可在供水管上安裝三個一次性補償器,一次性補償器安裝位置如圖1所示。一次性補償器補償量的選擇應根據管道冷卻后的收縮量確定,經觀察海油大街熱力管線工程每個預熱段的收縮量在160mm至200mm之間,一次性補償器的補償量選定為240mm。
7、管道回填
當管道達到預熱伸長量以后,應立即開始管溝回填。回填的順序為由預熱管段的兩端向中間回填。回填土中不得含有碎磚、石塊大于100mm的凍土塊及其他雜物。
8、管道預熱后對供熱管道的影響
直埋管道預熱后,即使在冷態時,管道中也分布著應力。在管道上開分支時,應注意保護干管的預應力狀態,增加臨時措施。
三、結論
燕郊開發區海油大街熱力管線已安全運行了4個采暖季,證明電預熱技術應用于大管徑管道直埋敷設是安全可靠的。采用預熱安裝技術比冷安裝有補償敷設方式減少了約7座補償器檢查室,不僅節省了投資,而且減少了管網的維修工作量,降低了勞動成本。對于地下水位較高、土壤具有一定腐蝕性,含氯離子較高的地區,特別適用該技術。
來源:中國供熱信息網








